#### **GRID ARCHITECTURE**

# Distribution System Evolution: Implications for Sensing and Measurement

**EAC Panel Discussion** 

13 September 2017

Jeffrey D. Taft, PhD
Chief Architect for Electric Grid Transformation
Pacific Northwest National Laboratory



# **Topics**

- Distribution Problem Domain Model
- Key Trends for Distribution evolution
- Present Status and Core Issues for Distribution Sensing
- Sensing and Measurement Implications for Grid Modernization

## **DER Problem Domain**



# Trend: Renewables Integration Changes Grid Operations



Introduces balancing and stability issues to the grid.

Introduces fast dynamics to the distribution system, affecting voltage regulation and system stability.



# Trend: Less Time, More Data, More Endpoints



- Increasingly faster device/system dynamics
- Moving from slow data sampling to fast streaming data
- Massive numbers of sensing and control endpoints



## Future Distribution = Load + Gen Tie Point



## Preferred DER Structure





DER Grid Services Entity-Relationship Diagram
Boxes represent entity classes
Lines represent relationships (read relationship text in direction of the arrow)

Note: all DER-based grid services are delivered to and through the electric distribution grids. The term "supplies" refers to the business arrangement.

# Other Key Trends



DSOs will need superb distribution grid measurement capability to support demanding distribution grid operational capability.

# Where Does Distribution System Sensing Stand Now?

- Many distribution systems have little or no distribution SCADA
- Many distribution substations have no SCADA
- Most existing distribution sensing is low speed and low capability
  - Mostly polled or exception reporting
  - Minimal sensing of grid variables
- Older AMI is not very useful for grid sensing; newer technology is improved but not widely deployed
- Communication networks for distribution are often weak, siloed, and non-converged
  - Poor performance (low bandwidth, lossy, insecure)
  - Not future-proofed
  - Cause high integration costs and complexity
- Poor grid topology model accuracy (needed for data context)
- Grid sensor installation is expensive

## Common Distribution Grid Sensors

- Line sensors
  - Voltage, current, or both; compute real/reactive power, THD and harmonics
- Control device sensing
  - Voltage, current or both
- Faulted circuit indicators
- Premises meters residential
- Premises meters C&I
- Feeder meters
- Substation sensing
- Power quality monitors



Lindsey CVI Line Sensor



Fisher Pierce FCI

# What Do We Need to Know for Distribution Grid Operations?



## Distribution Grid Measurement Issues

- Control System PoV (grid state level)
  - Dynamic system snapshot
- Instrumentation PoV (AC waveform level)
  - Volt/VAr control; feeder phase unbalance
  - Real power flow (incl. direction)
  - Synchronization (DG, microgrids, power switching)
  - Fault detection, characterization & localization (3-phase AC methods)
     (e.g. methods of Bollen & Gu, Naidoo & Pillay, Krishnathovar & Ngu)
  - Asset utilization & asset condition
    - Many methods use complex impedance measurement
- Data Sharing PoV (application level)
  - Low latency multi-user access needed
  - High back end integration cost/complexity





# Implications for Modernized Distribution Grid Sensing & Measurement

#### Electrical Measurement

- Fast waveform sampling
- Magnitudes and phases (unbalanced)
- High precision (small phase differences)
- Timing/synchronization

#### Architecture

Infrastructure layer

### Networking

- Redundancy
- Multicast streaming (SSM)

### Sensor technology

- Grid topology sensing
- Inexpensive installation

### Design

- Observability methodology
- Allocation tool





## **Final Comments**

- 20<sup>th</sup> Century distribution grids did not need much observability
- Modernized grids with high DER penetration and advanced capabilities will need advanced sensing and measurement and data transport
  - Fast synchronized sensing & measurement
  - Adequate coverage (observability strategy-> sensor network design)
  - Inexpensive installation
  - Grid topology and system models
  - Volatility at the edge
- Sensing and networks as core infrastructure layer
  - Streaming sensor data
  - Timing distribution
  - Synchronized measurements
- Heavy lift for many distribution utilities to get to this level
  - Many advanced grid management schemes will have to wait until this level of upgrade happens

#### GRID ARCHITECTURE

# Thank You

Jeffrey D. Taft, PhD jeffrey.taft@pnnl.gov



# **Existing DER Structure**



# Likely Near Term DER Structure



## Separate Components from Infrastructure via Layering







- Siloed, coupled apps
- Long latency
- Poor flexibility
- Expensive integration

- Independent apps
- Low latency
- High functional flexibility
- Low cost integration
- Future-proofed investment

Hawaii PUC Docket No. 2016-0087, Order No. 34281, Dismissing Application Without Prejudice and Providing Guidance for Developing a Grid Modernization Strategy, Jan. 4, 2017 pp. 54-57

### Electricity and Energy Systems are Changing Organically

#### Grid Evolution: One-way Road to Grid of Things

Distribution grid becoming a multi-directional network integrating millions of intelligent devices, DER and back-up generation



Operating such a system requires greater situational visibility and collaboration with customers and their services providers

Source: P De Martini

#### **Grid Economics Are Evolving**

- Business and operating models are being forced into change
- Grid economics is headed into new territory
- Consumer expectation and technology are bigger drivers than regulation or policy

#### Grid as a Platform



- Grid as Back-up to customer self-sufficiency erodes grid value
- Business as usual enhances value through aging infrastructure replacement and operational efficiencies
- Grid as Platform expands value through enabling DER integration at scale and utilization as a system and grid resource
- Convergence model extends value through synergies between electric service and other essential networks such as water and transportation, often pursued in smart city initiatives

Source: P De Martini



